
1310 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 7, JULY 2001

A Memory-Efficient Formulation of the
Finite-Difference Time-Domain Method
for the Solution of Maxwell Equations

George D. Kondylis, Franco De Flaviis, Gregory J. Pottie, Member, IEEE, and Tatsuo Itoh, Life Fellow, IEEE

Abstract—With the increase in speed and memory storage
in modern computer systems, the finite-difference time-domain
(FDTD) method for the solution of electromagnetic problems is
rapidly becoming an attractive choice due to its programming
simplicity and flexibility in the analysis of a wide range of
structures. However, this technique has the drawback of high
computer memory requirements and computational power, when
analyzing large geometries. In this paper, a modified version of
the FDTD method with increased memory efficiency is presented
and applied to the calculation of the resonant frequencies of a
dielectric resonator coupled to a microstrip line. In this novel
approach, the divergence relationship, which spatially links the
three electric-field and three magnetic-field components, is used
to eliminate one component each ofE andH. This leads to a more
memory-efficient formulation, where only four field components
are stored in the whole domain, with a direct memory reduction
of 33% in the storage of the fields.

I. INTRODUCTION

T HE use of the finite-difference time-domain (FDTD)
method [1] is very attractive for the electromagnetic anal-

ysis of complicated geometries, due mainly to its algorithmic
simplicity. However, the computational requirements are high,
and computer memory can become a limitation for electrically
large bodies. This is due to the fact that the whole domain has to
be discretized with rectangular cells having a size of tenths of a
wavelength in order to avoid numerical dispersion, which will
lead to numerical inaccuracy [2]. The finite-element method
[3] is an alternative that allows arbitrary shape discretization,
helping to reduce the memory requirement whenever curved
structures must be analyzed, but adds to the computation by
having to invert very big matrices. The formulation is also
more complicated. Spectral-domain methods [6] are the least
demanding in terms of memory since only metal regions must
be discretized, but they are only able to deal with structures that
are laterally infinite. Moreover, the Green’s functions [12] that
must be used are not always available. Finally, finite-difference
methods that rely on higher order space derivatives [4] can sig-
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nificantly reduce storage requirements since they have higher
accuracy than FDTD. The formulation though becomes quite
complex, especially at the absorbing boundaries, and higher
order accuracy cannot be preserved across different dielectric
or magnetic materials, where the respective coefficients are
discontinuous [2]. Additionally, it has been reported [5] that
higher order methods are not as accurate as the Yee algorithms
for the simulation of surface waves.

In this paper, we modify the original FDTD formulation to re-
duce computer memory requirements, allowing a 50% increase
in the computational volume for a given computer memory size,
with only a moderate increase in computation and code com-
plexity [9]. To our knowledge, only one research group has
worked on this problem in the past. In [10], the use of diver-
gence-free electric-field regions was introduced, combined with
the scalar-wave equation in order to achieve this goal. In this
formulation, the computational domain is subdivided into di-
vergence-free and nonfree regions. Normal FDTD is applied
in regions of discontinuities, conductors, sources, and dielec-
tric interfaces, while the scalar-wave equation, requiring four
memory elements per cell, instead of the usual six of FDTD,
is used in electric-field divergence-free regions. Even though
this approach reduces memory requirements, its implementation
can be complicated to program due to the necessity of having
subregions. More importantly, the memory reduction for this
technique is only achieved in some specific geometries, such
as planar structures, or other cases where large homogeneous
regions exist. Recently, in [7] and [8], a new technique has
been proposed, where a 33% memory reduction is achieved for
two-dimensional problems with the use of a vector potential for-
mulation. The extension of this technique to three-dimensional
problems is under investigation.

In our new method, which we call reduced finite difference
time domain (R-FDTD), we eliminate the necessity of subdi-
viding the computational domain into subregions, maintaining
the advantage of reducing the number of required field compo-
nents to four, while also being able to easily treat conductors and
source regions. This is achieved by using the divergence-free na-
ture of the electric displacement instead of the electric field, as in
[10], and following a specific sequence for the spatial update of
the remaining field components. Conductors and source regions
are properly treated by calculating the induced charges, which
are then used in the divergence of . In our formu-
lation, although we store only four field components over the
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whole domain and the induced charge wherever conductors are
present, we can always reconstruct the two missing field compo-
nents. This way, standard absorbing boundary conditions, such
as Mur [14] or perfect matched layer (PML) [13], can be imple-
mented, as will be shown in Section V. Here lies one significant
merit of R-FDTD, i.e., its close resemblance to regular FDTD.
For large electromagnetic problems, where memory can really
become the decisive factor in using time-domain methods, the
transition from FDTD to R-FDTD requires only simple code
modifications.

The remainder of this paper is organized as follows. In Sec-
tion II, we begin with the formulation for divergence-free re-
gions, where no conductors or sources are present, and explain
the new algorithm first for the simpler two-dimensional case.
Next, we extend R-FDTD to the three-dimensional case and
present the algorithm in detail. In Sections III and IV, further
extensions are made for the treatment of conductors and source
regions. Numerical results are presented in Section V, where the
perfect agreement with FDTD confirms the validity of our tech-
nique. In Section VI, we conclude with some discussion of the
merits and drawbacks of the new method, as well as potential
areas of application.

II. NEW FORMULATION IN CHARGE-FREE REGIONS

The standard Yee algorithm [1] for the solution of Maxwell
equations is based on their discretization in space and time.
Starting from system (1), the time marching solution is obtained
using a leapfrog scheme [2] to propagate from each component
of to and vice versa as follows:

(1)

In this scheme, all six scalar field components are used explic-
itly and, therefore, must be stored over the whole computational
domain due to the presence of first derivatives in time in (1). In
charge-free regions though, these components are not indepen-
dent, but are linked through the two flux equations. This link can
be obtained by taking the divergence on both sides of Ampère’s
and Faraday’s equations of system (1), in which case, we obtain
[12]

(2)

(3)

Upon approximating the time derivatives with central time dif-
ferences in (2) and with forward time differences in (3), we
rewrite the above equations as follows:

(4)

(5)

Fig. 1. Definition of the elementary cell for the two-dimensional TE case.

Assuming that initially at time , all the field
components are zero over the whole computational domain, we
obtain

(6)

(7)

Note here that, the assumption of zero initial fields is generally
true everywhere, except the source region, which will be treated
in detail in Section IV.

Equations (6) and (7) demonstrate a spatial dependence be-
tween the components of vectorsand , respectively. Notice
that because and , this spatial dependence
exists regardless of the properties of the medium, which are in-
cluded in (6) and (7). We use this dependence in (6) and (7) to
spatially link two of the field components to the other four, and
this way, we reduce the number of field components needed in
FDTD from six to four. Similarly, in the two-dimensional case,
we reduce the number of components from three to two. In the
following, we begin with the simpler two-dimensional case and
we continue with the three-dimensional extension. Throughout
the paper, we assume that the magnetic permeability coincides
with that of free space . Our results extend directly to
mediums with magnetic properties , by a parallel for-
mulation.

A. Two-Dimensional Formulation

Consider at first the TE two-dimensional case, i.e., the only
field components are , , and , as shown in Fig. 1. Equa-
tion (6) can be used to link and and, upon discretization
in space and reordering, can be written as

(8)

Equation (8) can be incorporated into a standard FDTD al-
gorithm, and upon a proper update scheme, onlyneed to be
stored over the whole computational domain. To explain how
this is done, assume that has already been calculated
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Fig. 2. Spatial-field update mechanism. The storage vector has lengthN and
storesE (i; j � 1), i = 1: N .

with the regular FDTD update equation over the whole com-
putational domain and we want to continue with the update of

without having to store everywhere. The FDTD
update equation for is [1]

(9)

Therefore, in order to proceed with the field update,
and are needed. These can be

spatially updated using (8), assuming we have already calcu-
lated for all . In other words, the update of

can be doneone at a timeand for all , with the
prior update of through (8) for all and having
stored only for all . Since
was needed only for the calculation of and is
not used for , , we can use the
same memory locations where we stored for
all to store the new values, . The spatial update
of is also illustrated in Fig. 2, where a vector of length

(the size of the computational domain along) is employed
for temporary storage of . Obviously, in order
to begin the algorithm, we need to know , which
can be obtained with the normal FDTD update equation for
as follows:

(10)

The pseudocode for the TE case of the two-dimensional algo-
rithm is shown at the bottom of the following page.

The pseudocode shows the essence of the algorithm: by up-
dating one each time and for all, we are
able to calculate only locally for that and store it in the

same vector we stored , which is no longer needed.
Note that this approach, as opposed to [10], can treat any di-
electric discontinuity or inhomogeneity naturally since
and for charge-free regions are always divergence-free
vectors, while maintaining the generality of the FDTD.

The TM two-dimensional case (i.e., the field components are
now , , and ) can be formulated along the same lines
by using (7) instead of (6). Upon discretization in space and
solving, for example, for , (7) is written as (assuming

)

(11)

Equation (11) can be used in a similar fashion as (8) so that
only needs to be stored everywhere. The formulation
is straightforward and will be skipped.

B. Extension to the Three-Dimensional Formulation

Our technique can be extended to the three-dimensional
problem by using (6) and (7) simultaneously. Due to spatial
dependence of the electric and magnetic fields through these
two equations, the total number of variables for the three-di-
mensional formulation is reduced from six required in regular
FDTD to four. In principle, one can independently choose the
components of and , which will be only locally updated
and not stored, but it will simplify calculations if we choose
components of the same direction forand .

Without loss of generality, consider the case whereand
are the components that are only locally calculated, and are

not stored in the whole domain. The update equations for them
are derived by discretization of (6)–(7), based on the elementary
cell definition shown in Fig. 3, and are as follows:

(12)

(13)

Beginning with the updates of , , one real-
izes that these can be done one at a time,
with the prior spatial update of through (13). This is so

since, in the FDTD update equations, depends
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Fig. 3. Definition of the elementary cell for the three-dimensional case.

on , , and depends
on , [1]. In the same way, the up-

dates of , can also be done one
at a time, with the prior spatial update of through (12).

As in the two-dimensional formulation, a storage of the
components of the fields at the previous location alongis re-
quired. For the three-dimensional case, this means that a two-di-
mensional array having size of must be used for each
one of the removed components. The extra memory requirement
for these arrays is not significant, and since the choice of which
component to remove is arbitrary, we can always choose to re-
move the field components in the direction for which the corre-
sponding arrays are minimized. The pseudocode for the three-
dimensional algorithm is shown at the bottom of page 1315.

Again note the innovative feature of the formulation: e.g.,
is calculated in the -field update part of the algorithm, one

at a time and is stored in the same memory
locations as for the previous. Correspondingly, is cal-
culated in the -field update part, also one plane
at a time and is also stored “in place.”

As in the FDTD formulation, the stability condition for this
new numerical technique is imposed by the Courant condition
[2], which requires that, in one time step, the propagating wave
must not travel more than one computational cell.

1) field update. Use regular FDTD:
for :

for :

end
end

2) field update.

1) Get from regular FDTD and store it in [eq. (10)].
2) Update for all and :

for :
for :

end
Update spatially for next iteration, [eq. (8)]:
for :

end
end
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III. CONDUCTORTREATMENT

Inthepresenceofconductors, thedivergenceoftheelectric flux
is not zero anymore, but rather equals the induced charge on the
conductor ,1 and (6) is not satisfied. In order to use our method
in the presence of a conductor, the induced charge must be found.
Indeed, in the following,weproceed toshowhowthiscanbedone
through the use of the regular FDTD update equations, indepen-
dently of our new algorithm, and then we discuss the extension of
R-FDTD to include regions with conductors. Although we treat
electric conductors in detail, all the discussions extend easily to
the case of magnetic conductors with a parallel analysis.

Revisiting (4), let us denote by the differ-
ence approximation to . Based on the elementary cell
definition shown in Fig. 3, can be written as

(14)

Equation (4) in discrete-space discrete-time form will then be
written as

(15)

It is crucial for the rest of the development to realize here that
(15) is always satisfied after , , and have been up-
dated from the usual FDTD equations since these are naturally
divergence free [this can also be shown by direct substitution of
the regular FDTD -field update equations in (14)]. In the ab-
sence of conductors or sources, , which
is nothing more than the discretized version of (6).

Now, to fix ideas, assume that there is a conductor segment
at cell , extending on the -plane. That means that

and are always zero. We will ex-
amine in detail the effect of setting to zero, the
results for follow by a simple rotation of co-
ordinates. In regular FDTD, is first updated with
the usual update equation, as for all the other , and later
set to zero per the following steps.

Step 1) Usual FDTD update

(16)

Note here that, from the previous time up-
date and, therefore,

1The induced charge on a perfect electric conductor (PEC) is, in reality, a sur-
face charge. However, due to the discretization in the FDTD, it will appear as a
volume charge, dispersed inside the cells comprising the conductor. An equiva-
lent surface charge can always be obtained by multiplying� by the size of the cell
in the direction normal to the surface of the conductor.

depends only on the magnetic
field. Call this temporary value
of .

Step 2) Later in the code, .
Now, notice that after Step 1), but before Step 2),

satisfies (15) for all since only
the regular FDTD equations have been involved before Step
2). After Step 2), will be affected at cells

and [i.e., at the two ends of vector
], as can be seen by (14). Specifically,

bringing to the right-hand side of (15) the term to be zeroed in
Step 2), we can write

(17)

(18)

Equations (17) and (18) provide recursive relations to calcu-
late and , be-
ginning at with

and . The obvious solutions are

(19)

(20)

Since is just the discrete-time dis-
crete-space approximation to , it is clear that the
imposition of created induced charges
at cells and , which are given by
the right-hand side of (19) and (20). The induced charges
resulting from can be obtained by (19) and
(20) by interchanging the - for -coordinate; consequently,

due only to will be
nonzero at cells and . At these cells,
the following equations hold:

(21)

(22)

It is obvious now that the charge at cell due to both
and being zero, will actually be the sum of the right-hand

sides of (19) and (21).
Now, we can introduce a new variable , for the

PEC cells only, which represents the induced charge of that
cell. In the example analyzed above, (19) implies that the
charge induced to cell , due to the imposition
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of , will be updated based on the
following equation:

(23)

while, from (20), the charge induced to cell and
due to will be updated by

(24)

1) field updates.

a) Get from regular FDTD and store it in .
b) Update and for all and :

for :
for : , :

end
Update spatially for next iteration [eq. (13)]:
for : , :

end
end

2 field updates.

a) Get from regular FDTD and store it in .
b) Update and for all and :

for :
for : , :

end
Update spatially for next iteration [eq . (12)]:
for : , :

end
end
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Similar equations can be written for the charges induced by
. Two remarks are in order here:

first, observe that is nothing else, but
, as calculated in Step 1) [we just called

it a different name so that it does not get confused with the
zero value of of Step 2)]. This quantity is
calculated within the regular FDTD algorithm and, therefore, it
is already available to us; second, (23) and (24) do not give the
total induced charge in cells and , but
only the part due to . If the PEC extends
to cell , for example, there will be another con-
tribution to cell from ,
as implied by (20). Equation (23) will then become

(25)

As a concrete example of the charge calculation, consider a
conductor plate on the -plane at and extending for

, . After having updated and

everywhere, we update the charge and then set
the tangential fields on the conductor to zero, as shown in the
algorithm at the bottom of this page.

Note from this example that the charges on the edges of the
conductor are updated differently from the charges inside the
conductor due to the fact that the field components normal to the
edges, but external to the conductor, are not zero. Based on this
example, the generalization for PECs of any orientation should
be obvious.

Having found the charge in an independent way, as explained
above, we can now use it to extend the reduced FDTD algo-
rithm to include electric conductors. Of course, we need to in-
troduce a new variable, i.e., the charge, for the conductor cells.
The number of conductor cells though is usually very small with
respect to the total number of cells in the whole domain and,
therefore, there is practically a negligible increase in memory
requirements. The charge is updated using the appropriate equa-
tion between (23)–(25) and along the lines of the example de-
scribed above. One problem arises when a conductor extends in
the direction of that electric-field component that is spatially up-
dated. For example, in the case we update spatiallyand ,
and a conductor lies along the-direction, we cannot use equa-
tions like (23)–(25) since we do not have

(which is before being set to zero). How-
ever, since , will

1) Charges due to and setting to zero :
for ,

for ,

end

end
2) Charges due to and setting to zero :

for ,

for ,

end

end



KONDYLIS et al.: MEMORY-EFFICIENT FORMULATION OF FDTD METHOD FOR SOLUTION OF MAXWELL EQUATIONS 1317

only depend on the magnetic field, and the regular FDTD up-
date would be

(26)

Since we have and everywhere, we can use the
right-hand side of (26) in the place of to
update the charge for conductors that extend in the-direction.

The charge found in the way exhibited above is simply
added to the left-hand side of (15) for the conductor cells. Ob-
serve also that we do not have to setexplicitly to zero when-
ever it is tangential to a PEC, it will be forced to zero (i.e., to a
very small numerical value) by (12) with the addition of.

As a final remark, we would like to note that (23)–(25) are
nothing more than discrete forms of the differential equation of
the conservation of charge, namely,

(27)

where is the induced current.2 Indeed, consider Ampère’s law

(28)

Across a conductor, the tangential electric-field components are
zero and, therefore,

(29)

where subscript refers to the tangential components. There-
fore, (27) becomes

(30)

where denote the normal to the conductor surface component
of . Equations (23)–(25) can be derived anew from the
discretization of (30). We preferred to show how they can be ob-
tained directly from FDTD in order to demonstrate their actual
application and to avoid technical difficulties with the edges of
the conductors.

IV. SOURCETREATMENT

The standard way to excite the electromagnetic field in
FDTD is to impose a time-varying field distribution in a certain
space region. As can be expected,does not maintain its
divergence-free property, though in the case of homogeneous
media, this happens only for these cells where the imposed
electric flux is terminated. In any case, we will be able to
compute the appropriate correction term in advance (i.e. before
the start of the time iteration) and use it in . The analysis
follows the same lines as for the conductor treatment, i.e.,
finding a recursive relation for (which is, again,
the discrete-time discrete-space approximation to ) and

2Again, here, the induced current on the conductor appears as a volume cur-
rent. For the case of a conductor on thexz-plane, an equivalent surface current
can be obtained by multiplyingJ by�y.

Fig. 4. Imposed source field on a portion of thexy-plane.

solving it to obtain the equivalent charge induced by the source.
For example, suppose a soft electric-field source alongis
imposed on the plane , for , , as
shown in Fig. 4

(31)

We now need to determine the equation satisfied by
in the source region so that we can use it in our algorithm for
the spatial update of one electric-field component. Just before
the application of the source in the code, satisfies, as
usual, (15). It is straightforward to show that, after imposing the
soft source according to (31), the following equations hold:

1) For ,

(32)

2) For ,

(33)

since there is no imposed field in .
3) For ,

(34)

since there is no imposed field in .
For homogeneous media, whereis constant, (32) implies

that for , . That
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is, is nonzero only where the imposed elec-
tric flux is terminated, i.e., for and , as shown
by (33) and (34) (see also Fig. 4). In the general case, we can
use the recursive equations (32)–(34) with the initial condition

to write the following equation for ,
which holds for all , , and the specified:

if

if

if
(35)

The terms on the right-hand side of (35) can be calculated for
each before the beginning of the time update of the fields, and
then used at the appropriate time iteration. In the most common
case where the source is imposed in a homogeneous medium,
the right-hand side of (35) simplifies greatly and one needs to
store only one of the two lower terms for eachsince the first
term is zero and the other two are just opposite.

Finally, note that, for homogeneous media, the fact that the di-
vergence of is nonzero only wherever the imposed field flux
is terminated can be explained by equivalent charges that are in-
duced at these points, as can be seen in Fig. 4. In the intermediate
cells of the source region, the charges cancel each other, but not
so at the termination of the imposed -field. The charges in-
duced by the source keep accumulating according to (35).

V. NUMERICAL RESULTS

As a validation of the new formulation, a microstrip coupled
dielectric resonator is analyzed with the R-FDTD and FDTD
methods and results are compared with measured data. Perfect
agreement between FDTD and R-FDTD is observed, indicating
the equivalence of the two methods. Good agreement with the
measured data is also observed.

The measurement was performed on a cylindrical resonator
of 2.26-mm diameter and 0.91-mm height, made of a Perovskite
based on Ba, Zn, Ta–oxide (see Fig. 5). The dielectric resonator
(manufactured by Trans-Tech, model D8733-0089-036) has a
relative dielectric permittivity of 30.15, and a factor at 10
GHz of 12 200. The resonator is placed on top of a dielectric
substrate, the substrate is made of 124-m-thick alumina (rel-
ative dielectric constant ) with a ground metal (gold
plated) on the other side, as shown in Fig. 5. A 9-mm-long offset
conductor of 124 –m width is used to couple the field to the
resonator. The whole substrate was enclosed on a rectangular
waveguide whose dimensions are 2.54.6 7.5 mm, to reduce
radiation losses (see Fig. 5). The resonator was placed directly
on the substrate (no spacer was used) with one edge exactly at

Fig. 5. Geometry of the microstrip coupled dielectric resonator analyzed.

Fig. 6. Comparison of measured and simulated magnitude of the transmission
coefficient for the microstrip coupled dielectric resonator.

the edge of the microstrip line (no overlapping). The measure-
ment of the resonance frequency was done using a network ana-
lyzer (HP 8510C) with coaxial probes (Picoprobe Model 40 A).
Wraparound-type ground transitions for the probes were done
with silver epoxy. By using the thru-reflect-line (TRL) [15] cal-
ibration technique, 25-dB return-loss sensitivity was achieved
over the band going from 20 to 40 GHz. The total length of
the microstrip from the two reference planes was 7.5 mm. The
measured transmission coefficient for the proposed structure
is reported in Fig. 6. The desired resonance frequency is ob-
tained at 29.862 GHz, and a box resonance is also observed at
26.075 GHz and two higher resonances, respectively, at 36.875
and 37.963 GHz.

To simulate the described structure, the whole domain was
discretized with a uniform grid having the dimensions of 100
60 166, respectively, along-, -, and -directions. The cor-
responding grid size was m, m,
and m; this choice allows to best fit the resonator
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height and substrate dimensions with the grid. The excitation
is obtained through a Gaussian pulse under the strip conductor
having a width of ps, corresponding to a maximum fre-
quency of 50 GHz. The number of time steps was set at 10 000.
Reflection conditions are used on the metal sidewalls of the
waveguide, and PMLs [13] are used at the two waveguide ends.
All field components are calculated and stored inside the PML.
A standard procedure is used to extract the transmission parame-
ters [16] for the analyzed structure. The transmission coefficient
obtained is shown in Fig. 6 for normal FDTD and our formula-
tion (R-FDTD), and is compared with measured data. The two
calculated curves overlap completely, while some difference is
observed with the measured data for the highest resonance fre-
quencies.

VI. CONCLUSION

In this paper, we have presented a new formulation of the
FDTD method that reduces computer memory requirements by
up to 33%, by eliminating global storage of one electric-field
and one magnetic-field component. Using the fact that, in
charge-free magnetically homogeneous media, bothand
are solenoidal, we linked spatially oneand one component
to the other two. This way, the spatially updated components
need to be stored only locally. The formulation follows closely
that of the FDTD method, as can be seen from the pseudocodes
presented for the two- and three-dimensional cases and, there-
fore, retains most of its simplicity.

Conductors are treated by calculating the charge induced to
them by the electromagnetic field, and subsequently using it in
the divergence of . The induced charge is essentially calcu-
lated through the continuity equation, although we derived the
update equations directly from FDTD since, this way, their im-
plementation is more clear. A treatment very similar to the one
used for conductors also yields the equivalent charge induced by
the source and, therefore, we were able to extend our method in
source regions as well. With these extensions, for conductors
and sources, the new formulation becomes general and can be
used in the place of regular FDTD, whenever memory savings
are critical. In terms of numerical results, it has proven practi-
cally equivalent to FDTD for the case examined.

It can be argued that, due to the existence of the three-di-
mensional matrix , the actual memory reduction in our
formulation is not 33%, but rather 28.6%. However, in appli-
cations where memory is the limiting factor, it does not make
much sense to use a matrix like that, where very large sub-blocks
(corresponding to different dielectric bodies) will contain the
same dielectric constant. With an increase in coding complexity,
the FDTD method can be formulated to do without . One
simple method is to update the fields inside individual dielec-
tric bodies first and then on the interfaces. Our method also ex-
tends rather easily to such an update scheme. On the other hand,
the new formulation is computationally more demanding than
FDTD. As can be checked by the algorithms, FDTD requires
24 additions and 18 multiplications per cell, while R-FDTD re-
quires 24 additions and 24 multiplications. This increase in mul-
tiplications comes from the spatial update of the-field com-
ponent through the divergence of [see (12)].

In view of the memory savings described above, but also
the disadvantages of more computations and a slight increase
in coding complexity, the new method we propose should find
applications in large electromagnetic problems where memory
is the liming factor. For example, we are currently researching
the applicability of R-FDTD to wireless channel prediction for
indoor spaces, such as residences or offices. Other problems
involving scattering from electrically very large bodies should
also benefit from this method.
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