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Abstract—With the increase in speed and memory storage nificantly reduce storage requirements since they have higher
in modern computer systems, the finite-difference time-domain gccuracy than FDTD. The formulation though becomes quite

(FDTD) method for the solution of electromagnetic problems is ., hjex especially at the absorbing boundaries, and higher
rapidly becoming an attractive choice due to its programming

simplicity and flexibility in the analysis of a wide range of order accuracy cannot be preserved across differer.1t.dielectric
structures. However, this technique has the drawback of high or magnetic materials, where the respective coefficients are
computer memory requirements and computational power, when discontinuous [2]. Additionally, it has been reported [5] that

analyzing large geometries. In this paper, a modified version of pigher order methods are not as accurate as the Yee algorithms
the FDTD method with increased memory efficiency is presented . .
for the simulation of surface waves.

and applied to the calculation of the resonant frequencies of a . ] = )
dielectric resonator coupled to a microstrip line. In this novel In this paper, we modify the original FDTD formulation to re-
approach, the divergence relationship, which spatially links the duce computer memory requirements, allowing a 50% increase
three electric-field and three magnetic-field components, is used jn the computational volume for a given computer memory size,

to eliminate one component each dE and H. This leads to a more . . . .
memory-efficient formulation, where only four field components with only a moderate increase in computation and code com-

are stored in the whole domain, with a direct memory reduction plexity [9]. To our knowledge, only one research group has

of 33% in the storage of the fields. worked on this problem in the past. In [10], the use of diver-
gence-free electric-field regions was introduced, combined with
|. INTRODUCTION the scalar-wave equation in order to achieve this goal. In this

formulation, the computational domain is subdivided into di-

HE use of the finite-difference time-domain (FDTD) . : !
I . . . ergence-free and nonfree regions. Normal FDTD is applied
method [1] is very attractive for the electromagnetic anal- g ¢ bp

i< of licated ries. d inlv to its alqorith In regions of discontinuities, conductors, sources, and dielec-
ysis of complicated geometries, cue mainly to Its algorinmig . interfaces, while the scalar-wave equation, requiring four
simplicity. However, the computational .regu|.rements are .h'g emory elements per cell, instead of the usual six of FDTD
;':md cgn:jpute[rrr?emc;ry C?ntrt]) eior??hatllrﬁltatlhor; fc:jr elec;trlr(]:alg used in electric-field divergence-free regions. Even though
arge bodies. this Is due o thefact that the whole domain ha Ia?s approach reduces memory requirements, its implementation
be discretized with rectangular cells having a size of tenths o n be complicated to program due to the necessity of having
wavelength in order to avoid numerical dispersion, which wi bregions. More importantly, the memory reduction for this
lead to numerical inaccuracy [2]. The finite-element meth '

[3] is an alternative that allows arbitrary shape discretization chnique is only achieved in some specific geometries, such
y P ag planar structures, or other cases where large homogeneous

helping to reduce the memory requirement whenever curved o axist. Recently, in [7] and [8], a new technique has

structures must be analyzed, but adds to the computation bg.in proposed, where a 33% memory reduction is achieved for

having to invert very big matrices. The formulation is aIS?wo—dimensional problems with the use of a vector potential for-

more co_mpl_lcated. Spectral-domgm methods [6] are the Ie‘?‘ﬁalation. The extension of this technique to three-dimensional
demanding in terms of memory since only metal regions must

. . : roblems is under investigation.
be discretized, but they are only able to deal with structures ti?aﬁn our new method WhgiJch we call reduced finite difference
are laterally infinite. Moreover, the Green’s functions [12] th me domain (R-FDTIE)) we eliminate the necessity of subdi-
must be used are not always available. Finally, finite-diﬁeren%? '

: O ding the computational domain into subregions, maintainin
methods that rely on higher order space derivatives [4] can Stie a%lvantage Fc)n‘ reducing the number of rec?uired field compg-

nents to four, while also being able to easily treat conductors and

Manuscript received August 11, 1999. source regions. This is achieved by using the divergence-free na-
G. D. Kondylis was with the Department of Electrical Engineering, Universitiure of the electric displacement instead of the electric field, as in
of California at Los Angeles, Los Angeles, CA 90095 USA. He is now with HRL[lO] and foIIowing a specific sequence for the spatial update of

Laboratories, Malibu, CA 90265 USA. o . .
F. De Flaviis is with the Department of Electrical and Computer Engineerinfl€ remaining field components. Conductors and source regions

University of California at Irvine, Irvine, CA 92697 USA. ~_are properly treated by calculating the induced charges, which
G. J. Pottie and T. Itoh are with the Department of Electrical Englneerlng, th din the di dAV.-D = | f

University of California at Los Angeles, Los Angeles, CA 90095 USA. re then used in the divergenc { D= p). In our formu-
Publisher Item Identifier S 0018-9480(01)05042-6. lation, although we store only four field components over the

0018-9480/01$10.00 © 2001 IEEE



KONDYLIS et al. MEMORY-EFFICIENT FORMULATION OF FDTD METHOD FOR SOLUTION OF MAXWELL EQUATIONS 1311

whole domain and the induced charge wherever conductors are y
present, we can always reconstruct the two missing field compo-
nents. This way, standard absorbing boundary conditions, such
as Mur [14] or perfect matched layer (PML) [13], can be imple-
mented, as will be shown in Section V. Here lies one significant
merit of R-FDTD, i.e., its close resemblance to regular FDTD.
For large electromagnetic problems, where memory can really
become the decisive factor in using time-domain methods, the J
transition from FDTD to R-FDTD requires only simple code
modifications.

The remainder of this paper is organized as follows. In Sec-
tion I, we begin with the formulation for divergence-free re- i
gions, where no conductors or sources are present, and eXpﬁd-.nl. Definition of the elementary cell for the two-dimensional TE case.
the new algorithm first for the simpler two-dimensional case.
Next, we extend _R-FD_TD to _the three_—dlmensmnal case aﬁ%suming that initially at timet = 0(n = 0), all the field
presen.t the algorithm in detail. In Sections IIl and 1V, furthe£Ornponents are zero over the whole computational domain, we
extensions are made for the treatment of conductors and soyge.: |
regions. Numerical results are presented in Section V, where the
perfect agreement with FDTD confirms the validity of our tech- Vv .D"tY2 ¢ (6)
nigue. In Section VI, we conclude with some discussion of the

X

n+l _
merits and drawbacks of the new method, as well as potential V-B =0. (7)
areas of application. Note here that, the assumption of zero initial fields is generally
true everywhere, except the source region, which will be treated
Il. NEW FORMULATION IN CHARGE-FREE REGIONS in detail in Section IV.

) ) Equations (6) and (7) demonstrate a spatial dependence be-
The standard Yee algorithm [1] for the solution of MaxweI{Ween the components of vectdbsandB, respectively. Notice

equations is based on their discretization in space and tife.+ hecaus® — ¢F andB — ,/H, this spatial dependence
Starting from system (1), the time marching solution is obtained ;s regardless of the properties of the medium, which are in-
using a leapfrog scheme [2] to propagate from each compongifyed in (6) and (7). We use this dependence in (6) and (7) to

of E to H and vice versa as follows: spatially link two of the field components to the other four, and
this way, we reduce the number of field components needed in
9 D=VxH FDTD from six to four. Similarly, in the two-dimensional case,
ot (1) We reduce the number of components from three to two. In the
9 B=_VxE. following, we begin with the simpler two-dimensional case and
ot we continue with the three-dimensional extension. Throughout

In this scheme, all six scalar field components are used explﬂ:].Ea paper, we assume that the magnetic permeabm_ty coincides
ith that of free spacéu = ). Our results extend directly to

itly and, therefore, must be stored over the whole computatio di ith i " b llel f
domain due to the presence of first derivatives in time in (1). ;IAESLS with magnetic properti€s # uo), by a parallel for-

charge-free regions though, these components are not indeﬂ@
dent, but are linked through the two flux equations. This link ¢ : . .
Lo . . . .“A. Two-Dimensional Formulation
be obtained by taking the divergence on both sides of Ampeﬁegs W _ ! _I et _ _ .
and Faraday’s equations of System (1), in which case, we ObtairCOI’ISIder at first the TE two-dimensional case, l.e., the Only

[12] field components ar&,, E,, andH.., as shown in Fig. 1. Equa-
tion (6) can be used to link’,, and £, and, upon discretization
9 in space and reordering, can be written as
V-—D=0 2
) By, §) = L= By, - 1) -
V.o B=0. k) 7 (6, 3) €5 ¢ ( ) Az
.EiijgH/Q(iv ) —ein BT - 1, )

Upon approximating the time derivatives with central time dif- € )
ferences in (2) and with forward time differences in (3), we (8)

rewrite the above equations as follows:

Equation (8) can be incorporated into a standard FDTD al-
v. (Dn+l/2 _ Dn—l/?) -0 4) gorithm, and upon a proper update scheme, @jlyneed to be
stored over the whole computational domain. To explain how
V- (B*tt -B") =0. (5) this is done, assume th& /2 has already been calculated
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updated same vector we storef, (4, j — 1), which is no longer needed.
using VoD =0 Eviii Note that this approach, as opposed to [10], can treat any di-
y(i.j) - T : . :
electric discontinuity orinhomogeneity naturally sifde= cE
¥ direction of andB = pH for charge-free regions are always divergence-free
_ Ey spatial update ~ VECtors, while maintaining the generality of the FDTD.
J T T The TM two-dimensional case (i.e., the field components are
* now H,, H,, and£.) can be formulated along the same lines
J-1 Si‘;rgff by using (7) instead of (6). Upon discretization in space and
solving, for example, foH (4, j), (7) is written as (assuming
y \ t = fio)
x values used to update H "+1( ¢, 5 +1)
Ey(i,j) using VeD=0
e = By ) - R [HEG 1) - G ).
Fig. 2. Spatial-field update mechanism. The storage vector has |&hgtmd * (11)

storesE»+1/2(i, j —1),i = 1: N,.

Equation (11) can be used in a similar fashion as (8) so that

with the regular FDTD update equation over the whole congmly H, (i, 5) needs to be stored everywhere. The formulation
putational domain and we want to continue with the update @f straightforward and will be skipped.

H"+! without having to storé "/ everywhere. The FDTD
update equation foH "1 is [1] B. Extension to the Three-Dimensional Formulation

Our technique can be extended to the three-dimensional
problem by using (6) and (7) simultaneously. Due to spatial
YHo dependence of the electric and magnetic fields through these
. [Eg+1/2(i, j+1)— EMU2( j)} At two equations, the total number of variables for the three-di-

Azpo  mensional formulation is reduced from six required in regular
. [E;"“/Q(i +1, ) — E;"“/?(i, j)} . (9) FDTD to four. In principle, one can independently choose the
components oE and H, which will be only locally updated
Therefore, in order to proceed with tE*+(i, j) field update, and not stored, but it will §imp_lify calculations if we choose
En—l—l/Q(.’ ) andE"*l/Q(i +1, j) are needed. These can bé:omponents of the same direction f6randH.

spatially updated using (8), assuming we have already calc}L}W'thc;Et loss of genter?rllltyg, consuljelr the” cascla V\ih?[ﬁand q
IatedE"+1/2( j — 1) for all i. In other words, the update of v are the components that are only locally calculated, and are

HP(4, §) can be donene; at a timeand for aIIL with the not stored in the whole domain. The update equations for them

ror e (. ) a9 o g b 25 S Y Grlzaonsl 07 i on e cemenay
stored onlyE; 1 2(L j— 1) foralli. SlnceE"Jr 20,5 — 1) g- % '

was needed only for the calculation 8 *1(, 5 — 1) and is

o At
HIV, ) = HEG, ) + 5

n+1/2/7. .

not used ford2** (4, j), H2*' (i, j + 1), ..., we can use the Byt 26, 4. k)
same memory locations where we storié@f’l/2 i, j—1)for = Shi-Lk B2, j—1,k)
all ¢ to store the new vaIuesE"*l/ (i, j). The spatial update Ei, gk s L
of EitY/% is also illustrated in Fig. 2, where a vector of length Ay e s a2, g, k) —eimy juln T2 (=1, 4. b)
N, (the size of the computatl/onal domain alarlgs employed Ax i jk

n+1/2 . .
for temporary storage df, (i, —1). Oflv/lg)usly, in order Ay ei,j,kEZ’J’l/Q(i, k) e jae 1E"+1/2(L k1)
to begin the algorithm, we need to kna#/; 1), which AL ik
can be obtained with the normal FDTD update equaﬂorﬂ@r R (12)
as follows:

A H M, j+1, k)
n—|—1/2 = o n—1/2 = _
By )= By ) = = U, gk = S [HEY L, k)= B G k)|
’ x
JEHT GO — BTG — A
26 D= HIG=1 D] 00 B[ ) (13)

The pseudocode for the TE case of the two-dimensional algo-

rithm is shown at the bottom of the following page. Beginning with the updates o’ , one real-
The pseudocode shows the essence of the algorithm: by %8s that these can be done gne- constant plane at a time,

datingH.(4, j) onej = constant each time and for afl, we are With the prior spatial update off;" through (13). This is so

able to calculatéz, (¢, j) only locally for thatj and store itinthe since, in the FDTD update equanorEZ*l/Q( , J, k) depends

n+1/2 En+1/2
z
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X dates ofH*t1, H™+! can also be done onje= constant plane
at a time, with the prior spatial update Bf "/ through (12).

As in the two-dimensional formulation, a storage of the
components of the fields at the previous location algngre-
quired. For the three-dimensional case, this means that a two-di-
mensional array having size 8f, x N, must be used for each
one of the removed components. The extra memory requirement
for these arrays is not significant, and since the choice of which
component to remove is arbitrary, we can always choose to re-
move the field components in the direction for which the corre-
sponding arrays are minimized. The pseudocode for the three-
dimensional algorithm is shown at the bottom of page 1315.

Again note the innovative feature of the formulation: eHj;,
is calculated in theéE-field update part of the algorithm, one
j = constant plane at a time and is stored in the same memory
locations as for the previoys CorrespondinegE;“’l/Q is cal-
culated in theH-field update part, also ong= constant plane
Fig. 3. Definition of the elementary cell for the three-dimensional case. &t @ time and is also stored “in place.”

As in the FDTD formulation, the stability condition for this
new numerical technique is imposed by the Courant condition
onH,' (i, j, k), H} (4, j, k — 1), andEQH/Q(i, j, k) depends [2], which requires that, in one time step, the propagating wave

onHy (i, j, k), H; (i — 1, j, k) [1]. In the same way, the up- must not travel more than one computational cell.

y

1) E, field update. Use regular FDTD:
for i=1.N, -1
for j=2oN, -1

EZ2(i, 5y = BTV §) +

Age,; H20 ) — HX(j = 1)) (FDTD)

0
end j
end i
2) H_ field update.
1) Get E}TY2(i, 1) from regular FDTD and store it in ve(i) [eq. (10)].

2) Update H. for all iand j:
for j=1:N,—-1
for i=1: N, -1

" . nse . At n Co n r. 1
BV, ) = B2 )+ o[BG ) = BTG )

At .
Ropolveli+ D) —vs(d]  (FDID)
end i

Update spatially EITY2(i 4+ 1) for next j iteration, [eg. (8):
for i=2:N, -1

. €5, 4 . Ay [ ntl/2/; -
)= —1 pp(i)— ——2 e 1 E i, j+1
UE(L) Ei,j—l—l UE(L) Axei,j—l—l 5/7J+1 T (L J + )+
ey ESYA- 1,4+ 1)] (VD =0)
end i

end j
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[Il. CONDUCTOR TREATMENT EQ*I/Q(iO, Jjo, ko) depends only on the magnetic
- n+1/2,. N .
Inthe presence of conductors, the divergence of the electric flux f'e|dh§f‘/”21?ox . (40, jo, ko) this temporary value
is not zero anymore, but rather equals the induced charge on the of £z (0, Jo, ko).

conductorp,! and (6) is not satisfied. In order to use our method Step 2) Later in the COdEQH/Q(io, Jo, ko) = 0.
inthe presence of a conductor, the induced charge must be fouddw, notice that after Step 1), but before Step 2),
Indeed, inthe following, we proceed to show how this can be dogeD”+1/2(4, j, k) satisfies (15) for all(i, j, k) since only
through the use of the regular FDTD update equations, indepéme regular FDTD equations have been involved before Step
dently of our new algorithm, and then we discuss the extension@)f After Step 2),AD"*1/2(i, j, k) will be affected at cells
R-FDTD to include regions with conductors. Although we tregto, jo, ko) and(zo + 1, jo, ko) [i.e., at the two ends of vector
electric conductors in detail, all the discussions extend easily&8 /(i jo, k)], as can be seen by (14). Specifically,
the case of magnetic conductors with a parallel analysis.  bringing to the right-hand side of (15) the term to be zeroed in
Revisiting (4), let us denots bxD"+1/2(i, 4, k) the differ-  Step 2), we can write

ence approximation t&-D"*1/2, Based on the elementary cell nt1/2, ne1/2, .
definition shown in Fig. 3AD"™*1/2(i, 4, k) can be written as AD™H2(ig, jo, ko) = A? , "*(io, jo, ko)

ig,Jo, ko pm+1/2,. .

T A EOJ; (507 Jo, kO)

ADn+1/2(i’ j, k) e
e BT G k) — e BRT -1, G k) 17)
a Az ADn—i—l/Q(iO""la jOv kO) = ADn_l/Q(i0+1, jo, /{}0)
+ Ei’j’kE;H—l/Q(i’ k) = Ei:j—lykE;H/Q(iv J—1k) +—Ei07Aﬁ; = Eggl/Q(io, Jos ko).
n (18)

n+1/2,. . n+1/2,. .
i, ik EE 20, G R) — e, g BT g R~ D Equations (17) and (18) provide recursive relations to calcu-
Az 14 late ADn+l/2(i0, jo, ]%0) and ADn+1/2(i0 =+ 1, jo, ko), be-
(14) " ginning atn = 0 with AD~Y2(iy, jo, ko) = AD~Y/2(iy +
Equation (4) in discrete-space discrete-time form will then b j,, ko) = 0 ,fjde(];n/c2 = 0. The obvious solutions are
written as n
ADn-I—l/Q(,L'7 17 k‘) — ADn_l/2(i, 17 k‘) (15) ADn—H/Q(im ‘7'07 ko) = —%X—;ko ZEgjl/Q(io, jo, ko)

m=1

It is crucial for the rest of the development to realize here that (19)
(15) is always satisfied aftet’,, E,, and E. have been up- n
dated from the usual FDTD equations since these are naturalyp™/2(ijo+1, jo, ko) = Eio,do, ko ZEgjl/Q(io, Jos ko)
divergence free [this can also be shown by direct substitution of A me1
the regular FDTDE-field update equations in (14)]. In the ab- (20)
sence of conductors or sourcesD™"'/%(;, j, k) = 0, which o AD™1/2(; j k) is just the discrete-time dis-
is nothing more than the discretized version of (6). crete-space approx’im’ation & . D it is clear that the
Now, to fix ideas, assume that there is a conductor segment cition of £ (ios jo ko) = O créated induced charges
at cell (io, jo, ko), extending on the:z-plane. That means that cells (io, jo. ];"O)Oéng’(iooJr 1. jo. ko). which are given by
Ex(io, Jo, ko) andE. (io, jo, ko) are always zero. We will ex- right-hand side of (19) and (20). The induced charges
amine in detail the effect of setting..(io, jo, ko) to zero, the resulting fromE, (i, jo, ko) = 0 can be obtained by (19) and

results forE. (<o, jo, ko) = 0 follow by a simple rotation of co- : ; : )
) ) S P o - (20) by interchanging the- for z-coordinate; consequently,
ordinates. In regular FDTDY,(i0, jo, ko) is first updated with AD™/2(i 4, k) due only to E.(io, jo, ko) — 0 will be

thet ES;aLUpd?t;eiuﬁt'\?v?r; astfor alithe offiey, k), and later nonzero at cell§ig, jo, ko) and(io, jo, ko +1). At these cells,
Set 1o zero perthe following Steps. the following equations hold:
Step 1) Usual FDTD update

- . . Eio, 70, k - 77 . .
E;L+l/2(i0, jo, ko) AD +1/2(ILO? Jo, ko) = _$ ZEO?—I/Q(ZOv Jo, kO)

At .
— En200 b ) NP
z (LO’ Jo 0) + Ay5i07j07k0

: [H?(imjm%) — H (%0, jo — 1,/%‘0)} -

+

(21)
At

AD™H/2¢; , jo, ko+1) = €io, jo, ko Enz-f—l/Q io. jo. ko).
A25i07j07k0 (0 Jo, o ) Az Z 0z (0 Jo 0)

m=1

: [Hg(io, Jos ko) — Hy/ (4o, jo, ko — 1)] (16) (22)

It is obvious now that the charge at cél}, jo, ko) due to both
E, andE. being zero, will actually be the sum of the right-hand
sides of (19) and (21).

IThe induced charge on a perfect electric conductor (PEC) is, in reality, a sur-Now, we can introduce a new variab}€s, j, k), for the

face charge. However, due to the discretization in the FDTD, it will appear agg=C cells onIy which represents the induced charge of that
volume charge, dispersed inside the cells comprising the conductor. An equiva- '

&l In th | lyzed ab 19) implies that th
lent surface charge can always be obtained by multiplyingthe size of the cell cell. In t € example an.a y;e above, ( ) |mp 1es t. fat the
in the direction normal to the surface of the conductor. charge induced to cellio, jo, ko), due to the imposition

Note here that, from the previous time up
date E;”_I/Q(io,jo, ko) = 0 and, therefore,
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of E-2(ig, jo, ko) = 0, will be updated based on thewhile, from (20), the charge induced to cél + 1, jo, ko) and

following equation: due toE2?(io, jo, ko) = 0 will be updated by
p" 2 (i, jo, ko) P2 (g + 1, o, ko) = p" 2 (i0 + 1, jo, ko)
"o .. €ig, jo, k n+l1/2,. . €ig, jo, k n+1/2,. .
= p" Y 2(io, jo, ko) — WE% (io, jo, ko) +$ ESY 2o, o, ko).
(23) (24)

1) E,, E. field updates.
a) Get H; (4, 2, k) from regular FDTD and store it in v (4, k).
b) Update F, and E. for all i, kand j:
for j=2:N,—-1
for i=1.N,—-1,k=1.N, -1

At
EMY2(i 5 k) = EDTYR(, G k) + ———— [HI(i, §, k) — HI (6, j — 1, k)] +
Ayei, j, i
At
- i, k) —vg(i, k—1 FDTD
Koo, i ) = vn G k= 1)) (FDTD)
EQ+1/2(Z‘, 7. k)= EQ—1/2(i, i, k) + Aoe L At [v(i, k) —vg(i — 1, B)]+
T4, 5, k
At
- ———[H'(i, §, k) —H'(G, j— 1, k FDTD
R, ¢ PG 0 k) —HYG -1 0] (FOID)

end k, i
Update spatially Hy(i, j+ 1, k) for next j iteration [eq. (13)]:
for i=22N, -1, k=2:.N., -1

Ay

UH(ia k) = UH(i’ k) - E [H:(L + 1a ja k) - H:(La ja k)]+
A
= A HIG G k) = HIG G R (V- H=0)
end k, i
end j
2 H,, H_ field updates.
a) Get E;TY2(4, 1, k) from regular FDTD and store it in vpli, k).

b) Update H, and H. for all i, kand j:
for j=1:N, -1
for i=1.N,—-1,k=1.N,-1

At
H'Y (6, 5 k) = H (4, j, k) + A e, k+1) —vg(i, k)] +

<

At
_ ErtY/20 5 0 k) B2 FDTD
Aypio [ STV G+ k) = BTV k)} (FDTD)
HIF G, Gy K) = H2G 0, )+ o (B2, o+ 1, ) = B, ) +
Aypo
[wp(i+1, k) — vg(i, k)] (FDTD)

- Azpig
end k, i
Update spatially EJTY2(i 4+ 1, k) for next jiteraton  [eq. (12)]:
for i=2:N,—1,k=2:N. -1

vslis ) = s ) - ﬁ [e6, jn kBZF200, G+ 1, )+
—eioy, o W EPTY2 (=1, 4 1, k)} - % [Ei,j+l,kEg+l/2(ia J+1, k)+
i, 541, k
—ei bk LT 1, k= )] (V-D=0)
end k, i

end j
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Similar equations can be written for the charges induced W;J’I/Q(i, J, k) everywhere, we update the charge and then set
EQ“/Q(z‘O, Jo, ko) = 0. Two remarks are in order here:the tangential fields on the conductor to zero, as shown in the
first, observe thatEgjl/Q(io, Jjo, ko) is nothing else, but algorithm at the bottom of this page.

E2+1/2(z‘0, jo, ko), as calculated in Step 1) [we just called Note from this example that the charges on the edges of the

it a different name so that it does not get confused with t@nductor are updated differently from the charges inside the
zero value ofE;“’l/Q(io, jo, ko) of Step 2)]. This quantity is conductor due to the fact that the field components normal to the
calculated within the regular FDTD algorithm and, therefore, fdges, but external to the conductor, are not zero. Based on this
is already available to us; second, (23) and (24) do not give fB¥ample, the generalization for PECs of any orientation should

totalinduced charge in cellg, jo, ko) and(ig+1, jo, ko), but D€ obvious. o '
"’+1/2(i0 jo, ko) = 0. If the PEC extends Having found the charge in an independent way, as explained

only the part due td’, ]
to cell (io — 1, jo, ko), for example, there will be another Con_a?bove, we can now use it to extend the reduced FDTD algo-
rithm to include electric conductors. Of course, we need to in-

tribution to cell(io, jo, ko) from EX+Y2(ig — 1, jo, ko) = O, , _
(io; Jo, ko) * (io =1, jo, ko) troduce a new variable, i.e., the charge, for the conductor cells.

as implied by (20). Equation (23) will then become

1

P2 (o, o, ko) = p" 2 (do, jo, ko) + Ax
) [Ei0—17j07k0 Egjl/Q(iO — 1, j0, kO)

n+1/2 r .
~€ig, jo, ko Loa | (f0, Jo, ko)} .

(25)

The number of conductor cells though is usually very small with
respect to the total number of cells in the whole domain and,
therefore, there is practically a negligible increase in memory
requirements. The charge is updated using the appropriate equa-
tion between (23)—(25) and along the lines of the example de-
scribed above. One problem arises when a conductor extends in
the direction of that electric-field component that is spatially up-
dated. For example, in the case we update spatlg)lgndH,,

and a conductor lies along thedirection, we cannot use equa-

. . . +1/2,. .
As a concrete example of the charge calculation, considefi@ns like (23)-(25) since we do not have], (o, jo, ko)
conductor plate on thez-plane aj = j. and extending foip <  (which is E{]*l/Q(z‘o, Jo, ko) before being set to zero). How-

i < i1, ko < k < ki. After having updated /% (i, j. k)and ever, sinceEr *(io, jo, ko) = 0, Ey % (ig, jo, ko) will

1) Charges due to E, and setting EXTY2 40 zero

for k = ko: ky,
p 2 g, ey ) = p" 20, ey B) = IR EITY 2 g, G )
P, oy K) = g2, oo B+ SRR B2, 1 k)
for @ =4dp+1:43 — 1,
P20 G k) = Y26 G, k) + Aia; [Ei_l,jc,kEZH/Q(i —1, Je, k) —ei ok EZTY2G o, k)}
Ent2(i -1, jo, k) =0
end ¢
Ert2( —1, ., k) =0
end &
2) Charges due to E.and setting EZ"?to zero
for 4 = dg: 41,
p”’+1/2(i, o, o) = pn—1/2(i7 Jey ko) — Ei:j#’“oEg-i—l/Q(i7 o ko)
P2 o k) = PTG e ) TR BV o Ry - 1)
for k=ko+1: ki —1,
P20 G k) = p Y20 g, k) + i |:Ei7jc,k71E2+l/2(i7 Jer k= 1) =& jo k ELTV( e, k)}

E2+1/2(ia jCa k - 1) =0
end k
ErY2(i ok —1) =0

end i
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only depend on the magnetic field, and the regular FDTD up- X
date would be imposed source
+1/20; i;+1
E;L (ILO? Jo, kO)
At
=20 [Ho, jo. ko) — H"(do, j k—l}
A25i07j07k0 |: x ([’07 Jo, 0) x ([’07 Jo, Ro )
At o . . io
— —— | H (io, jo, k —Hf“—l,f,k]
Azeis o e [ 2 (do, jo, ko) 2 (io Jos ko)

(26)

Since we haveH and H!' everywhere, we can use the :
right-hand side of (26) in the place @,/ (io, jo, ko) t0 o 2 .
update the charge for conductors that extend inyth@ection. |
The chargep found in the way exhibited above is simply Ji I
added to the left-hand side of (15) for the conductor cells. Ob- ¥
serve also that we do not have to ggtexplicitly to zero when- _ _
ever it is tangential to a PEC, it will be forced to zero (i.e., to §9- 4 'mposed source field on a portion of the-plane.
very small numerical value) by (12) with the additionof
As a final remark, we would like to note that (23)—(25) ar&olving it to obtain the equivalent charge induced by the source.

nothing more than discrete forms of the differential equation 50" €xample, suppose a soft electric-field source alorig

the conservation of charge, namely, imposed on the plane = ko, forig < i < iy, jo < j < ji, as

P shown in Fig. 4

p —_ — .

o= @D m k)

wherelJ is the induced curreritindeed, consider Ampere’s law = E"TY2(i, 4, ko)
oD (n —no)At\’ io < i<y
= —— 31
VxH="2+4. (28) +eXp< T o <i<i (31)

Across a conductor, the tangential electric-field components

% now need to determine the equation satisfie n+1/2
zero and, therefore, q d\dy

in the source region so that we can use it in our algorithm for
J=(VxH), (29) the spatial update of one electric-field component. Just before
] . the application of the source in the codeD"*1/? satisfies, as
where subscript refers to the tangential components. Thergysyal, (15). Itis straightforward to show that, after imposing the

fore, (27) becomes soft source according to (31), the following equations hold:

%:—V-(VXH)t:V-(VxH)n (30) 1) Forip < i <i1,j0 < J < J1

ot AD™ V24§, ko)
wheren denote the normal to the conductor surface component i o
of V x H. Equations (23)—(25) can be derived anew from the = AD"V2(4, j, k) + Sk AEZ_I’]”“O
discretization of (30). We preferred to show how they can be ob- 2 .
tained directly from FDTD in order to demonstrate their actual - exp <_w> ) (32)
application and to avoid technical difficulties with the edges of T
the conductors. 2) Fori =g, jo < j < J1

IV. SOURCE TREATMENT AD™2(i, 5, ko) = AD"TV2 (i, j, ko) 2
The standard way to excite the electromagnetic field in +€Z°—J"0 exp <_w>

FDTD is to impose a time-varying field distribution in a certain Az T
space region. As can be expectdd,does not maintain its (33)

divergence-free property, though in the case of homogeneous  gince there is no imposed field EQ“/Q(io —1, 4, ko).
media, this happens only for these cells where the imposed3) Fori=i,+1,j0<j<p

electric flux is terminated. In any case, we will be able to I

compute the appropriate correction term in advance (i.e. befasdd®"*'/2(i, j, ko) = AD" Y24, 4, ko)

the start of the time iteration) and use it¥h- D. The analysis Eir.jko (n —no)At 2
follows the same lines as for the conductor treatment, i.e., TTAp P <—T>
finding a recursive relation forAD”*t1/2 (which is, again, (34)
the discrete-time discrete-space approximatioivtoD) and

since there is no imposed field E;”J’l/Q(il +1, 4, ko).

2Again, here, the induced current on the conductor appears as a volume curi: h di here tant. (32) i i
rent. For the case of a conductor on theplane, an equivalent surface current  FOF homogeneous media, wheres constant, (32) implies

can be obtained by multiplying by Ay. thatAD"’+1/2(i, J, ko) = 0forip < i <iy,jo < j<yji.That
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4.6 mm

is, AD"*t1/2(i_ j, ko) is nonzero only where the imposed elec
tric flux is terminated, i.e., fof = ic and: = ¢; + 1, as shown
by (33) and (34) (see also Fig. 4). In the general case, we ¢
use the recursive equations (32)—(34) with the initial conditic
AD~Y/? = 0 to write the following equation foAD”t1/2,
which holds for alljy < 7 < 71, k = kg, and thei specified: Jeed opening

waveguide enclosure

w §°7

2.2¢.mm

ADn+l/2(i7 jv kO)
( i, jko — Ei—1, 4,ko En: exp <_ (m— no)At>2

w1670

Az T
if ig < i <4y
n 2 . .
EiO: j.ko exp (m - nO)At ‘microstrip line dlelegc(tgnc substrate
20, /R0 E . R . A— &p=9.
= Az T ’ :
oo m=l
if i =g

n 2
€i1, 4,k (m — no)At
v 2 e <_#> ’

m=1

\ ife=141+ 1.

1.9mm

m=1

dielectric resonator
£=30.15

0.124 mm

1.0mm 0.124mm 3.0 mm

Fig. 5. Geometry of the microstrip coupled dielectric resonator analyzed.

(35)

The terms on the right-hand side of (35) can be calculated f
eachn before the beginning of the time update of the fields, an ol

then used at the appropriate time iteration. In the most comm eledasddon S Ahod ‘—"\ /"“"""‘ 371
I \ ]: !
J
]

case where the source is imposed in a homogeneous medil
the right-hand side of (35) simplifies greatly and one needs . .» |
store only one of the two lower terms for eaglsince the first T
term is zero and the other two are just opposite. & I
Finally, note that, for homogeneous media, the fact that the F o
vergence oD is nonzero only wherever the imposed field flux I Measured
is terminated can be explained by equivalent charges that are R R-FDTD !
duced at these points, as can be seenin Fig. 4. Inthe intermed 6 ] — —-FDID
cells of the source region, the charges cancel each other, but
so at the termination of the imposéd -field. The charges in- ] L L L
duced by the source keep accumulating according to (35). 20 25 30 35 40

Frequency (GHz)

V. NUMERICAL RESULTS ! ) ) . .
Fig. 6. Comparison of measured and simulated magnitude of the transmission

As a validation of the new formulation, a microstrip Coup|eaoefﬁcient for the microstrip coupled dielectric resonator.
dielectric resonator is analyzed with the R-FDTD and FDTD
methods and results are compared with measured data. Petteetedge of the microstrip line (no overlapping). The measure-
agreement between FDTD and R-FDTD is observed, indicatingent of the resonance frequency was done using a network ana-
the equivalence of the two methods. Good agreement with tlyeer (HP 8510C) with coaxial probes (Picoprobe Model 40 A).
measured data is also observed. Wraparound-type ground transitions for the probes were done
The measurement was performed on a cylindrical resonatuith silver epoxy. By using the thru-reflect-line (TRL) [15] cal-
of 2.26-mm diameter and 0.91-mm height, made of a Perovskiieation technique, 25-dB return-loss sensitivity was achieved
based on Ba, Zn, Ta—oxide (see Fig. 5). The dielectric resonateer the band going from 20 to 40 GHz. The total length of
(manufactured by Trans-Tech, model D8733-0089-036) hashe microstrip from the two reference planes was 7.5 mm. The
relative dielectric permittivity of 30.15, and @ factor at 10 measured transmission coefficient for the proposed structure
GHz of 12 200. The resonator is placed on top of a dielectri€ reported in Fig. 6. The desired resonance frequency is ob-
substrate, the substrate is made of L2d-thick alumina (rel- tained at 29.862 GHz, and a box resonance is also observed at
ative dielectric constant,, = 9.8) with a ground metal (gold 26.075 GHz and two higher resonances, respectively, at 36.875
plated) on the other side, as shown in Fig. 5. A 9-mm-long offsahd 37.963 GHz.
conductor of 124 #m width is used to couple the field to the To simulate the described structure, the whole domain was
resonator. The whole substrate was enclosed on a rectangdiacretized with a uniform grid having the dimensions of 200
waveguide whose dimensions are 2.8.6x 7.5 mm, to reduce 60x 166, respectively, along-, -, andz-directions. The cor-
radiation losses (see Fig. 5). The resonator was placed direcdgponding grid size wadx = 45.2 um, Ay = 41.33 um,
on the substrate (no spacer was used) with one edge exactlgratA> = 45.2 um; this choice allows to best fit the resonator
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height and substrate dimensions with the grid. The excitationin view of the memory savings described above, but also
is obtained through a Gaussian pulse under the strip condudter disadvantages of more computations and a slight increase
having a width ofl” = 10 ps, corresponding to a maximum fre4n coding complexity, the new method we propose should find
quency of 50 GHz. The number of time steps was set at 10 0@@plications in large electromagnetic problems where memory
Reflection conditions are used on the metal sidewalls of tigthe liming factor. For example, we are currently researching
waveguide, and PMLs [13] are used at the two waveguide engs applicability of R-FDTD to wireless channel prediction for
Al field components are calculated and stored inside the PMindoor spaces, such as residences or offices. Other problems

A standard procedure is used to extract the transmission paraingelving scattering from electrically very large bodies should
ters [16] for the analyzed structure. The transmission coefficiefiso benefit from this method.

obtained is shown in Fig. 6 for normal FDTD and our formula-

tion (R-FDTD), and is compared with measured data. The two
calculated curves overlap completely, while some difference is
observed with the measured data for the highest resonance fr
quencies.
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charge-free magnetically homogeneous media, hvtind H

are solenoidal, we linked spatially olikand onél component

to the other two. This way, the spatially updated components
need to be stored only locally. The formulation follows closely [1]
that of the FDTD method, as can be seen from the pseudocodes
presented for the two- and three-dimensional cases and, thergy
fore, retains most of its simplicity.

Conductors are treated by calculating the charge induced td°!
them by the electromagnetic field, and subsequently using it in[4]
the divergence oD. The induced charge is essentially calcu-
lated through the continuity equation, although we derived the
update equations directly from FDTD since, this way, their im- 5
plementation is more clear. A treatment very similar to the one
used for conductors also yields the equivalent charge induced byfl
the source and, therefore, we were able to extend our method in
source regions as well. With these extensions, for conductorg;,
and sources, the new formulation becomes general and can be
used in the place of regular FDTD, whenever memory savings
are critical. In terms of numerical results, it has proven practi- 18]
cally equivalent to FDTD for the case examined.

It can be argued that, due to the existence of the three-di-
mensional matrix; ; », the actual memory reduction in our
formulation is not 33%, but rather 28.6%. However, in appli-
cations where memory is the limiting factor, it does not make10]
much sense to use a matrix like that, where very large sub-blocks
(corresponding to different dielectric bodies) will contain the[;q
same dielectric constant. With an increase in coding complexity,
the FDTD method can be formulated to do witheyt; . One  [12]
simple method is to update the fields inside individual dielec-[13]
tric bodies first and then on the interfaces. Our method also ex-
tends rather easily to such an update scheme. On the other hafid]
the new formulation is computationally more demanding than
FDTD. As can be checked by the algorithms, FDTD requireg;s;
24 additions and 18 multiplications per cell, while R-FDTD re-
quires 24 additions and 24 multiplications. This increase in mul[16]
tiplications comes from the spatial update of #dield com-
ponent through the divergence Bf [see (12)].
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